Fix when len is not used
This commit is contained in:
parent
b09465e8a5
commit
4d3f63e00f
|
@ -371,7 +371,14 @@ class Graphs {
|
||||||
var dt = splitted.split(sep.dotToLength);
|
var dt = splitted.split(sep.dotToLength);
|
||||||
if (dt.length == 2) {
|
if (dt.length == 2) {
|
||||||
dot.add(int.parse(dt[0]));
|
dot.add(int.parse(dt[0]));
|
||||||
len.add(int.parse(dt[1]));
|
if (_useLength) {
|
||||||
|
len.add(int.parse(dt[1]));
|
||||||
|
} else {
|
||||||
|
len.add(0);
|
||||||
|
}
|
||||||
|
} else if (dt.length == 1) {
|
||||||
|
dot.add(int.parse(splitted));
|
||||||
|
len.add(0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
_dots.add(Dot.fromTwoLists(name, dot, len));
|
_dots.add(Dot.fromTwoLists(name, dot, len));
|
||||||
|
@ -478,8 +485,8 @@ class Graphs {
|
||||||
path = path.reversed.toList();
|
path = path.reversed.toList();
|
||||||
|
|
||||||
//print("Shortest path between vertices ${startDot+1} and ${goalDot+1} is: $path");
|
//print("Shortest path between vertices ${startDot+1} and ${goalDot+1} is: $path");
|
||||||
if (path[0] == (startDot+1) &&
|
if (path[0] == (startDot + 1) &&
|
||||||
path[1] == (goalDot+1) &&
|
path[1] == (goalDot + 1) &&
|
||||||
!_dots[startDot].hasConnection(goalDot + 1)) return null;
|
!_dots[startDot].hasConnection(goalDot + 1)) return null;
|
||||||
return path;
|
return path;
|
||||||
}
|
}
|
||||||
|
@ -497,11 +504,35 @@ class Graphs {
|
||||||
if (!label[v]) {
|
if (!label[v]) {
|
||||||
label[v] = true;
|
label[v] = true;
|
||||||
for (int i in _dots[v].getL().keys) {
|
for (int i in _dots[v].getL().keys) {
|
||||||
stack.add(i-1);
|
stack.add(i - 1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return label;
|
return label;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void dijkstra(int source) {
|
||||||
|
/*
|
||||||
|
create vertex set Q;
|
||||||
|
|
||||||
|
for each vertex v in Graph{
|
||||||
|
dist[v] ← INFINITY ;
|
||||||
|
prev[v] ← UNDEFINED ;
|
||||||
|
add v to Q;}
|
||||||
|
dist[source] ← 0;
|
||||||
|
|
||||||
|
while Q is not empty{
|
||||||
|
u ← vertex in Q with min dist[u]
|
||||||
|
|
||||||
|
remove u from Q
|
||||||
|
|
||||||
|
for each neighbor v of u still in Q{
|
||||||
|
alt ← dist[u] + length(u, v);
|
||||||
|
if alt < dist[v]: {
|
||||||
|
dist[v] ← alt;
|
||||||
|
prev[v] ← u;}
|
||||||
|
}}
|
||||||
|
return dist[], prev[]*/
|
||||||
|
}
|
||||||
//************Алгоритмы************
|
//************Алгоритмы************
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue