MinDalle_StableDiff/scripts/stable_diff.py

135 lines
3.9 KiB
Python
Raw Normal View History

2022-09-17 15:14:39 +03:00
import json
import os
import shutil
import time
from time import strftime
2022-09-17 15:14:39 +03:00
from PIL import Image
import torch
from torch import autocast
import numpy as np
import piexif
import piexif.helper
from diffusers import (
#DDIMScheduler,
PNDMScheduler,
StableDiffusionImg2ImgPipeline
2022-09-17 15:14:39 +03:00
)
t = torch.cuda.get_device_properties(0).total_memory
if t <= 6400000000:
2022-09-24 11:03:40 +03:00
print("Running with less than 6gb memory. Working is not garanted")
file1 = open("prompt.txt", "r+")
2022-09-24 11:03:40 +03:00
text = file1.read()
print(text)
# Generating with stable diffusion
2022-09-24 11:03:40 +03:00
device = "cuda"
model_path = "CompVis/stable-diffusion-v1-4"
scheduler = PNDMScheduler.from_config(model_path, subfolder="scheduler")
#scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
2022-09-24 11:03:40 +03:00
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_path,
scheduler=scheduler,
revision="fp16",
torch_dtype=torch.float16
2022-09-24 11:03:40 +03:00
).to(device)
pipe.enable_attention_slicing()
2022-09-24 11:03:40 +03:00
def dummy_checker(images, **kwargs):
return images, False
2022-09-24 11:03:40 +03:00
pipe.safety_checker = dummy_checker
2022-09-24 11:03:40 +03:00
def preprocess(image):
w, h = image.size
# resize to integer multiple of 32
w, h = map(lambda x: x - x % 32, (w, h))
2022-09-24 11:03:40 +03:00
image = image.resize((w, h), Image.Resampling.LANCZOS)
image = np.array(image).astype(np.float32)/255.0
2022-09-24 11:03:40 +03:00
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.*image-1.
2022-09-24 11:03:40 +03:00
path_img = []
startStrength = 0.86
deltaStrength = 0.02
endStrength = 0.941
startScale = 7.5
deltaScale = 2.5
endScale = 15.0
startSeed = 1022
endSeed = 1024
directory_in = "./data/input"
if not os.path.exists(directory_in):
os.makedirs(directory_in)
for root, subdirectories, files in os.walk(directory_in):
for filename in files:
if filename.endswith(".png"):
path_img.append(os.path.join(root, filename))
2022-09-24 11:03:40 +03:00
print("Found " + str(len(path_img)) + " pictures")
2022-09-24 11:03:40 +03:00
start_time = time.time()
counterr = 0
allwork = 0
directory = "./data/out/" + strftime("%Y-%m-%d_%H-%M-%S") + "/"
2022-09-24 11:03:40 +03:00
if not os.path.exists(directory):
os.makedirs(directory)
with open(directory+"prompt.txt", 'w') as f:
f.write(text)
2022-09-24 11:03:40 +03:00
shutil.copytree(directory_in, directory+"input")
for i in path_img:
print(i)
if not os.path.exists(directory+str(counterr)):
os.makedirs(directory+str(counterr))
init_img = Image.open(i)
init_img = init_img.resize((768, 512))
init_image = preprocess(init_img)
prompt = text
for seed in range(endSeed-startSeed+1):
generator = torch.Generator(device=device).manual_seed(startSeed+seed)
guidance_scale = startScale
while guidance_scale <= endScale:
strenght = startStrength
while strenght <= endStrength:
with autocast("cuda"):
image = pipe(prompt=prompt, init_image=init_image, strength=strenght,
guidance_scale=guidance_scale, generator=generator)["sample"][0]
image.save(directory+str(counterr)+"/" + str(allwork) + ".jpg")
2022-09-24 11:03:40 +03:00
exif_dict = piexif.load(
directory+str(counterr)+"/" + str(allwork) + ".jpg")
2022-09-24 11:03:40 +03:00
userCommentAsDict = {}
userCommentAsDict['Seed'] = str(seed+startSeed)
userCommentAsDict['Strength'] = str(strenght)
userCommentAsDict['Guidance_scale'] = str(guidance_scale)
user_comment = piexif.helper.UserComment.dump(
json.dumps(userCommentAsDict))
2022-09-24 11:03:40 +03:00
exif_dict["Exif"][piexif.ExifIFD.UserComment] = user_comment
exif_bytes = piexif.dump(exif_dict)
piexif.insert(exif_bytes, directory +
str(counterr)+"/" + str(allwork) + ".jpg")
allwork += 1
2022-09-24 11:03:40 +03:00
strenght += deltaStrength
guidance_scale += deltaScale
2022-09-24 11:03:40 +03:00
counterr += 1
2022-09-17 15:14:39 +03:00
print("Made " + str(allwork) + " pictures in " +
str(time.time()-start_time) + " seconds")