Support for 6gb cards
This commit is contained in:
parent
ed4d5f6c1b
commit
dafa2c16bf
11
README.md
11
README.md
|
@ -24,8 +24,9 @@ c. Create a write token/Copy an existing Token key and enter in the cmd window.
|
|||
5. You can find output files in .\\data\\out\\%Timestamp% folder. Jpeg contain commentaries in metadata with some settings used while generating.
|
||||
|
||||
## Requirements
|
||||
* 11GB of free space.
|
||||
* Nvidia card with 8GB+ video memory.
|
||||
* Currently min dalle can run in 6gb. Testing purpose
|
||||
## Additional info
|
||||
Tested on RTX3070. One picture was making 12 - 14 seconds.
|
||||
* 10GB of free space.
|
||||
* Nvidia card with 6GB+ video memory.
|
||||
|
||||
## Tests
|
||||
RTX3070: 12 - 14 seconds per picture.
|
||||
RTX2060_Laptop: 21 - 25 seconds per picture.
|
|
@ -20,37 +20,38 @@ from diffusers import (
|
|||
from diffusers import StableDiffusionImg2ImgPipeline
|
||||
|
||||
t = torch.cuda.get_device_properties(0).total_memory
|
||||
if t <=8500000000:
|
||||
print("Not enough GPU memory to generate pictures")
|
||||
else:
|
||||
file1 = open("prompt.txt","r+")
|
||||
text = file1.read()
|
||||
print(text)
|
||||
if t<=6400000000:
|
||||
print("Running with less than 6gb memory. Working is not garanted")
|
||||
|
||||
##Generating with stable diffusion
|
||||
device = "cuda"
|
||||
model_path = "CompVis/stable-diffusion-v1-4"
|
||||
file1 = open("prompt.txt","r+")
|
||||
text = file1.read()
|
||||
print(text)
|
||||
|
||||
# Using DDIMScheduler as anexample,this also works with PNDMScheduler
|
||||
##Generating with stable diffusion
|
||||
device = "cuda"
|
||||
model_path = "CompVis/stable-diffusion-v1-4"
|
||||
|
||||
# Using DDIMScheduler as an example,this also works with PNDMScheduler
|
||||
# uncomment this line if you want to use it.
|
||||
|
||||
#scheduler = PNDMScheduler.from_config(model_path, subfolder="scheduler", use_auth_token=True)
|
||||
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
|
||||
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
||||
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
|
||||
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
||||
model_path,
|
||||
scheduler=scheduler,
|
||||
revision="fp16",
|
||||
torch_dtype=torch.float16,
|
||||
use_auth_token=True
|
||||
).to(device)
|
||||
if t <= 10500000000:
|
||||
).to(device)
|
||||
if t <= 11000000000:
|
||||
print("Less then 11gb video memory. Running with attention slicing.")
|
||||
pipe.enable_attention_slicing()
|
||||
|
||||
def dummy_checker(images, **kwargs):
|
||||
def dummy_checker(images, **kwargs):
|
||||
return images, False
|
||||
pipe.safety_checker = dummy_checker
|
||||
pipe.safety_checker = dummy_checker
|
||||
|
||||
def preprocess(image):
|
||||
def preprocess(image):
|
||||
w, h = image.size
|
||||
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
||||
image = image.resize((w, h), Image.Resampling.LANCZOS)
|
||||
|
@ -59,39 +60,39 @@ else:
|
|||
image = torch.from_numpy(image)
|
||||
return 2.*image - 1.
|
||||
|
||||
path_img = []
|
||||
path_img = []
|
||||
|
||||
startStrength = 0.86
|
||||
deltaStrength = 0.02
|
||||
endStrength = 0.941
|
||||
startStrength = 0.86
|
||||
deltaStrength = 0.02
|
||||
endStrength = 0.941
|
||||
|
||||
startScale = 7.5
|
||||
deltaScale = 2.5
|
||||
endScale = 15.0
|
||||
startScale = 7.5
|
||||
deltaScale = 2.5
|
||||
endScale = 15.0
|
||||
|
||||
startSeed = 1022
|
||||
endSeed = 1024
|
||||
startSeed = 1022
|
||||
endSeed = 1024
|
||||
|
||||
directory_in = "./data/input"
|
||||
if not os.path.exists(directory_in):
|
||||
directory_in = "./data/input"
|
||||
if not os.path.exists(directory_in):
|
||||
os.makedirs(directory_in)
|
||||
for root, subdirectories, files in os.walk(directory_in):
|
||||
for root, subdirectories, files in os.walk(directory_in):
|
||||
for filename in files:
|
||||
if filename.endswith(".png"):
|
||||
path_img.append(os.path.join(root, filename))
|
||||
|
||||
print("Found " +str(len(path_img)) +" pictures")
|
||||
start_time = time.time()
|
||||
print("Found " +str(len(path_img)) +" pictures")
|
||||
start_time = time.time()
|
||||
|
||||
counterr=0
|
||||
allwork=0
|
||||
directory="./data/out/" + strftime("%Y-%m-%d_%H-%M-%S", gmtime()) + "/"
|
||||
if not os.path.exists(directory):
|
||||
counterr=0
|
||||
allwork=0
|
||||
directory="./data/out/" + strftime("%Y-%m-%d_%H-%M-%S") + "/"
|
||||
if not os.path.exists(directory):
|
||||
os.makedirs(directory)
|
||||
with open(directory+"prompt.txt", 'w') as f:
|
||||
with open(directory+"prompt.txt", 'w') as f:
|
||||
f.write(text)
|
||||
shutil.copytree(directory_in, directory+"input")
|
||||
for i in path_img:
|
||||
shutil.copytree(directory_in, directory+"input")
|
||||
for i in path_img:
|
||||
print(i)
|
||||
if not os.path.exists(directory+str(counterr)):
|
||||
os.makedirs(directory+str(counterr))
|
||||
|
@ -129,4 +130,4 @@ else:
|
|||
|
||||
counterr+=1
|
||||
|
||||
print("Made " + str(allwork) + " pictures in " + str(time.time()-start_time) + " seconds")
|
||||
print("Made " + str(allwork) + " pictures in " + str(time.time()-start_time) + " seconds")
|
Loading…
Reference in New Issue